
Adding Videodisk Control to 
CAl Authoring Systems: A 
Software Customizing 
Methodology 

This article briefly describes a project, 
recently completed at Concordia University in 
Montreal, in which a program for controlling 
videodisk players was interfaced with an existing 
011 authoring system. The resulting package 
provides a tool with which professors and 
students can, with relative ease, tum the 
University's collection of O1V videodisks into 
level III interactive video tutorials. Of greater 
interest than the details of the current project 
is the process: a methodology for adapting 
existing commercial software packages to 
accomplish new and greater tasks. And this, 
JYithout actually modifying the existing 
programs. The present discussion involves IBM
PC type computers and assumes some 
knowledge of the operation of a Pc. 

Background Details 

B efore elaborating on the process, it is 
necessary to provide some background 
details. 

We gained experience in controlling 
videodisk players through our production, in 
1985, of the pilot version of a commercial 
videodisk training package called PWar, used to 
introduce a new business telephone system. 
While PlVaI' was well received by the critics, it 
had an enormous cost in terms of filming, 
graphics design, and original computer 
programming. Using similar production 
techniques in subsequent support of academic 
courses was simply not economically feasible. 
The videodisk driver program developed for 
PlVaI'lay dormant. 

Meanwhile, an authoring system called 
Scenario began to be used for in-house produc
tion of traditional CAl packages. Scenario offers 
a full colour text screen, support for graphics and 
music, and a well developed answer-processing 
capability. The call soon came for some use of 
Scenario in interfacing computers with 
videodisks players and producing level ill 
interactive video. 

The Scenario authoring system has its own 
native module for controlling video. This is 
available at an appreciable extra cost and requires 
the use of a third-party video adaptor for the 
computer which is even more expensive. Even 
at this, the videodisk operations did not perform 
at the level desired. 

It was known from the earlier PlVaI' project 
that no adaptor is required between an IBM-PC 
and the SONY LDP videodisk player, simply a 
null-modem serial cable. 

A Fundamental Requirement 

Could we not use the dormant videodisk driver 
program from PWGrfor control of the videodisk, 
while using Scenario for all other aspects of the 
desired training packages? It would be necessary 
for the author to be able to access the videodisk 
driver from within a Scenario program. 

The initial, fundamental requirement was that 
Scenario be able to access external programs. 
Luckily, the authoring system possesses a feature 
called "borrow" whereby it can load and execute 
an external DOS program, regaining control 
when the external program has terminated. 

Scenario accomplishes the "borrow" operation 
by loading a "secondary" copy of DOS's com-

Summer/Fall 1988 S5 



Journal of Educational Techniques and Technologies 

mand processor (COMMAND.COM), in much 
the same way as BASIC's "shell" instruction, 
dBASE's "run", or LarUS's "system." Having 
a second COMMAND.COM and a second 
program in memory at the same time as the host 
program does introduce a certain overhead, in 
terms of memory. But it can easily be handled 
by the 640K PCs which have almost become 
standard. 

More serious was the time required to load 
from floppy disk an additional copy of 
COMMAND.COM, followed, in turn, by the 
videodisk driver program. In initial tests, over 12 
seconds might pass between Scenario's "borrow" 
step and the videodisk player's response, clearly 
an unacceptable delay. The problem was solved 
through the creation of a "RAM disk", and the 
execution of all programs from the RAM disk. 
The delay time was reduced to under 1 second. 
(An additional boon was increased performance 
from Scenario itself.) 

Scenario and the Videodisk Driver 

Getting Scenario to run the videodisk driver 
program (now renamed VDP) efficiently was 
only the beginning of the solution. It was 
necessary for the author to be able to pass 
information to VDP from within Scenario, 
information on what, exactly, the videodisk 
player was to do. While Scenario offered an 
intricate system whereby external programs could 
"peek" at memory locations within Scenario to 
view the contents of variables, it was felt that this 
sort of intricate interaction should be avoided. 

QuickBASIC 4.0 offers a new BASIC function 
called COMMAND$ which allows a BASIC 
program to derive information from the DOS 
command line which started it. Inside Scenario's 
"borrow" step, therefore, we could specify, not 
only VDP, but also VDP's instructions. The 
following is an example: 

External Program to Borrow? TVDPIINXO/ 
SFl1000. In other words, turn index off and still
frame at - 10000. 

computer, it returns feedback to that computer 
as to what is happening. We wanted this feedback 
available to the author working within Scenario. 
If, for example, the Senario-based tutorial 
attempted to play the videodisk, but the videodisk 
player was not turned on, we wanted the Scenario 
program to sense this and provide an appropriate 
message. If the student pressed the space bar to 
terminate a video sequence, we wanted to know 
at what frame the videodisk stopped, so that our 
tutorial could provide a tailored explanation. 

Scenario has a feature called the ')\ccumulator 
Step", in which various internal Scenario 
variables can be set by the author, to keep track 
of such things as the student's score. Scenario can 
be set to branch to various different parts of the 
tutorial according to the value of its accumulators. 
A final detail, all of the "steps" that make up a 
tutorial are saved on the disk in binary files which 
only Scenario can interpret. 

Could the VDP program "create" a Scenario 
accumulator step, such that Scenario would not 
know the difference? Scenario was used to create 
dozens of nearly identical "steps" in which 
accumulator #99 was set to a range of different 
values. Each of the "steps" was set to branch to 
different subsequent "steps" inside a fictitious 
tutorial. All other features remained constant. 
The binary files were examined in much the same 
way as an astronomer looks at dozens of pictures 
of the same section of the sky, hoping to find an 
object that moves. Anyone who has examined 
binary knows that they are usually "gibberish" 
unless one has the key to decode them. And, 
indeed, the significance of most of Scenario's 
files remains a mystery, but those portions 
pertinent to setting the accumulator variable and 
determining where in the tutorial to resume 
operation were identified and understood. 

Thus, upon receiving feedback messages from 
the videodisk player, VDP "writes" a Scenario 
accumulator step. When control reverts to 
Scenario, accumulator #99 is examined, Scenario 
proceeds accordingly. 

We can thus use Scenario for creating all 
aspects of the tutorial and, from within Scenario, 

Problem of Return Communication can issue control messages to the videodisk player 
and receive and act upon responses from the 

Solving the problem of return communication videodisk player. Without the source code or any 
was more difficult. When the SONY LDP other technical support from the designers of the 
videodisk player receives commands from a host commercial software package, indeed without 

56 Summer/Fall 1988 



Journal of Educational Techniques and Technologies 

modifying it at all, we were able to effect major 
changes in the way it performed. 

Author's Notes: 

1. Scenario, by Bernard Michaud, is a product of Tech byte Inc. 
547 St, Thomas, Longueuil, Quebec, 14H-3A7, CANADA 
514-670-9452 

2. VDp, by Roger Kenner, is available from Concordia 
University, 1455 de Maisonneuve West, Montreal, Quebec, 
H3G-IM8, CANADA 514-848-3430. VDP was written using 
QuickBASIC 4.0. 

3. The Scenario and VDP combination was developed in 
response to a request by Prof. Mariella Tovar and Gilles Doiron 
of Concordia University's Education Department, who have 
successfully used it in the creation of a level III interactive 
videodisk on "Radioactive Decontamination." 

4. PIVar was a joint project of Concordia University, SONY 
of Canada, Bell Canada, and Northern Telecom. 

J.E.T.T. Contributor Profile 
Roger Kenner is head of the Learning Laboratory Services 
at Concordia University and teaches computer 
programming and computer literacy. Interested readers 
may write to him at the following address: 1455 
deMaisonneuve West, Concordia University, Montreal, 
Quebec, Canada H3G 1 MS. 

Summer/Fall 1988 57 




